Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Advanced Functional Materials ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2290645

ABSTRACT

The emergence of infectious diseases that are quickly spreading, like the coronavirus (COVID‐19), necessitates the development of efficient biosensors that can quickly detect and identify pathogens. It is essential to create sensitive virus detection methods in order to stop a virus from spreading throughout the world. It is determined that field‐effect transistors (FETs) made of nanomaterials are potential candidates for rapid virus identification due to how easily the electronic transport characteristics of such an atomically thin nanomaterial can be affected by perturbations. Various FETs in this review article are investigated that are based on nanoparticles, carbon nanotubes (CNT), graphene, graphene‐oxide, and semiconducting transition metal dichalcogenides (TMDs) WSe2 in order to show that they are promising biosensors in regards to quickly and precisely detect COVID‐19. The conjugation of nanomaterials with proteins enables the direct delivery of antiviral agents to the host cells. This method also minimizes the off‐target effects and enables the targeted interactions. This mechanism has produced encouraging results in regards to sensing or treating COVID‐19. The high surface area and extremely small size of nanomaterials make them crucial in regards to the development of new detection methods. The point‐of‐care test method of detection is quick, simple, and user‐friendly, and it only requires a small amount of a patient's blood. It does not require a laboratory or trained professionals. This overview of the current research that is conducted on nanomaterials will prove to be useful in the process of formulating strategies for the diagnosis, treatment, and vaccination of viruses in opinion. Finally, the conclusion of this review provides a summary of the current challenges and the future prospects. [ FROM AUTHOR] Copyright of Advanced Functional Materials is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Waste Management ; 155:77-86, 2023.
Article in English | Scopus | ID: covidwho-2246649

ABSTRACT

Inexpensive iron-based catalysts are the most promising catalysts for microwave pyrolysis of waste plastics, especially a large number of disposable medical masks (DMMs) with biological hazards produced by spread of COVID-19. However, most synthesized iron-based catalysts have very low microwave heating efficiency due to the enrichment state of iron. Here, we prepared FeAlOx catalysts using the microwave heating method and found that the microwave heating efficiency of amorphous iron and hematite is very low, indeed, these materials can hardly initiate pyrolysis at room temperature, which limits the application of iron-based catalysts in microwave pyrolysis. By contrast, a mixture of DMMs and low-valent iron oxides produced by hydrogen reduction at 500 °C can be heated by microwaves to temperatures above 900 °C under the same conditions. When the hydrogen reduction temperature was incerased to 800 °C, the content of metallic iron in the catalyst gradually increased from 0.34 to 21.43%, which enhanced the microwave response ability of the catalyst, and decreased the gas content in the pyrolysis product from 78.91 to 70.93 wt%;corresponding hydrogen yield also decreased from 29.03 to 25.02 mmolH2·g-1DMMs. Moreover, the morphology of the deposited solid carbon gradually changed from multi-walled CNTs to bamboo-like CNTs. This study clarifies the pyrolysis mechanism of microwave-assisted iron catalysts and lays a theoretical foundation for their application in microwave pyrolysis. © 2022 Elsevier Ltd

3.
Trends Analyt Chem ; 153: 116659, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2234051

ABSTRACT

Viral infections have been proven a severe threat to human beings, and the pandemic of Coronavirus Disease 2019 (COVID-19) has become a societal health concern, including mental distress and morbidity. Therefore, the early diagnosis and differentiation of viral infections are the prerequisite for curbing the local and global spread of viruses. To this end, carbon nanotubes (CNTs) based virus detection strategies are developed that provide feasible alternatives to conventional diagnostic techniques. Here in this review, an overview of the design and engineering of CNTs-based sensors for virus detection is summarized, followed by the nano-bio interactions used in developing biosensors. Then, we classify the viral sensors into covalently engineered CNTs, non-covalently engineered CNTs, and size-tunable CNTs arrays for viral detection, based on the type of CNTs-based nano-bio interfaces. Finally, the current challenges and prospects of CNTs-based sensors for virus detection are discussed.

4.
Nano Life ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-2138144

ABSTRACT

The current review article explores the binding empathy of carbon nanotubes (CNTs) for different molecular targets, in the context of their potential use to fight against severe acute respiratory syndrome corona virus-2 (SARS-CoV-2). CNTs are touted as one of the most impending theranostic tools, owing to their exceptional mechanical, thermal and optical properties. Furthermore, their structural reliability and functional group flexibility make them especially useful for the design of advanced biosensing devices both for diagnostic and therapeutic applications against SARS-CoV-2. In addition, CNTs could also function both as an antigen carrier and an adjuvant when used concurrently with current and upcoming COVID-19 vaccines. [ FROM AUTHOR]

5.
Int J Nanomedicine ; 16: 5411-5435, 2021.
Article in English | MEDLINE | ID: covidwho-1362163

ABSTRACT

Advances in nanobiotechnology have allowed the utilization of nanotechnology through nanovaccines. Nanovaccines are powerful tools for enhancing the immunogenicity of a specific antigen and exhibit advantages over other adjuvant approaches, with features such as expanded stability, prolonged release, decreased immunotoxicity, and immunogenic selectivity. We introduce recent advances in carbon nanotubes (CNTs) to induce either a carrier effect as a nanoplatform or an immunostimulatory effect. Several studies of CNT-based nanovaccines revealed that due to the ability of CNTs to carry immunogenic molecules, they can act as nonclassical vaccines, a quality not possessed by vaccines with traditional formulations. Therefore, adapting and modifying the physicochemical properties of CNTs for use in vaccines may additionally enhance their efficacy in inducing a T cell-based immune response. Accordingly, the purpose of this study is to renew and awaken interest in and knowledge of the safe use of CNTs as adjuvants and carriers in vaccines.


Subject(s)
Nanotubes, Carbon , Vaccines , Adjuvants, Immunologic , Antigens , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL